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Pliss [ 1 1 investigated the stability of the zero solution of equation 

(1) 

where the function f(q) is continuous and satisfies the Lipschitz condi- 
tion for all real 9. It was also assumed that f (0) = 0. He showed that 
the zero solution of equation (1) is in general stable, provided that the 
function f(v) is differentiable and df/dq > 1 for all ‘I, 

Here we first consider an equation analogous to (1). namely 

Here Q and i denote constants, and as in equation (1) the function f(q) 
is continuous and satisfies the Lipschitz condition, and in addition 
f(O) = 0. 

Using the assumed differentiability property of f(W). we will give a 
method somewhat different from that in paper [l 1 for the construction 
of the Liapunov function for equation (1). We will then show that by the 
same method the Liapunov function can be constructed for equation 

Theoren f. If a > 0, b > 0. the function f(q) is differentiable and 

(31 

df z&- for all W ; 
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then the zero solution of equation (2) is asymptotically stable for arbi- 

trary initial perturbations. 

‘ko prove this theorem, 

dx 
& = Y> 

and consider the function 

replace equation (2) by the equivalent system 

(‘!l _ clt -_z-_‘(~)Y, $=--fry-ax (5) 

r 

2V .= 2a 
s 

f’ (x) xdx + Zaxy -i_ by2 + 9 

n 

This function is obviously positive definite, and its derivative with 

respect to time, owing to system (5), is always negative: 

dV 
- = - [bf’ (x) -a] y2 

dt 

Following [ 2 1 , denote by 

easy to see that it does not 

of the coordinate system. If 

lim J (x) = w 
Ixi-+Q) 

$<O 
dV 

for yf& z=O ifor Y=O (7) 

M the set of points of the xz-plane. It is 

contain whole trajectories except the origin 

J (x) : 2a \ 1’ (x) xdx - $ x2) (8) 

0 

now holds good, then the function V(X, y, 2) is infinitely large (all its 

level surfaces are closed) and the proposition is proved (see Theorem 4 

of 121). 

If, however, 

\ [f’ (x) - +] xdx 

,I 

converges, then among the level surfaces of the function V(x, y, z), 

there will necessarily be open surfaces. In that case, repeating the 

relevant arguments of Shimanov 13 I, it can be shown that in general there 

is stability. 

In fact, consider the region 

V (x, Y, 2) < 1, Ixl<N (9) 

where 1 > 0 and N > 0 are certain constants. This region is bounded, 

since for 1 x 1 < N the boundedness of the y and z coordinates of the 

points of region (9) follows from the first inequality V < 1. 

Let P(xo, yo, zO) be an arbitrary point of the phase space. Consider 

an arbitrary trajectory y of the system (5) given by equations x = x(t) 

y = y(t), z = z(t) and issuing from the point P. Further select the 



Stability of sofutions of nonlinear differential equations 

1 and N so large that the point P is inside the region (91, i.e. 
the inequalities 

JJ (x0, l/00, 20) < 2 Izol<N 

are satisfied, 

Then for t > 0 all points of the trajectory y will remain inside the 
region (91, i.e. the inequal ities 

v (5 ($1, Y (a z (9 < L I 2, (t) I < N for t>O (W 

will hold good. 

In fact, if some point of the trajectory y leaves the region (91, then 
there will be a value of t = T for which the point 1. r(T), z(T), z(7’l] 
will lie on the boundary of the region (9). Then one of the inequalities 
(101 (or both simultaneously) will become equality. The first inequality, 
however, cannot become an equality owing to condition (71, according to 
which 

v (x PY, Y co, z V)f G v (x0, Yoo, zo) < 1 

The second inequality can become an equality only if, being the bound- 
ary of (91, the set 

v (I, y. 2) G 1, Ixl=N (11) 

is not empty. But in that case the constant N can be chosen so large that 
for the points of (111 condition 

yNsgnx= $Nsgnx<Cl (12) 

holds good. This is because the y coordinate of the points of (11) satis- 
fies the inequality 

where 
-aNsgns-F(N,z)<by&-aaNsngx+ F(N,z) 

F(N,z)=jir261-bJ(N)-bz” j 

(the expression under the square root sign in F(N, Z) assumes positive 
values not exceeding 2 bl. 

In accordance with (12). the integral curve on the set (111 crosses 
this set in the direction of decreasing x for N sgn x > 0, 

Thus we have shown that for t > 0 all trajectories of system (51 are 
inside the bounded region (9). Together with the above deductions as to 
V and its derivative with respect to time, this guarantees the general 
asymptotic stability of the zero solution of system (51 and consequently 
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of equation (2). Thus the theorem is proved. 

Now consider the equation 

(13) 

where the function f(q) is continuous and satisfies the Lipschitz condi- 

tion and f(O) = 0. 

Theorer 2. If cI > 0, & > 0 and the derivative df/dq of the function 

f (‘I) is such that 

df df 2 
bcdr]--b2-a q- ( J >O 

holds good for all values of the argument, then the zero solution of 

equation (13) is asymptotically stable for arbitrary initial perturbations. 

Proof. Replace equation (13) by the equivalent system 

dx d_y_ 
dz du 

-- 
dt - yp dt --’ 

,,=u---f’(y)z, d~=-cz-by-ax 

and consider the function 

2Y= (b2 + UC) x2 + Zbcxy + (19 - La) y2 + 4axz + 2byz + cz2 + 2bxu + 

+2w+2u2+2bff’(y)ydy (16) 

0 

This function is positive definite and infinitely large. In fact, we 

have 

f 2Y = fba + UC) 2% -j- 2bcxy + \C” - 2a + G 
> 

y2 f 4axz + Zbyz + 

Y 

-/- cz2 + 2bxu + 2cyu + 2u2 + 2b [ [jr (y) - $1 ydy 

0 

07) 

where 
Y 

i[f'(Y)- ;]YdY>O for YjO 
0 

This inequality holds good because by (14) f’_(y) > b/e and the quadratic 

form is positive definite. This assertion can easily be verified by the 

Sylvester criterion if we allow for the inequality C* - 4a > 0, which 

also follows from (14). 

Since every positive definite form is an infinitely large function. 

our assertion as to the function, V(x, y, z, U) is completely proved. 
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The derivative with respect to time of the function V, allowing for 

system of equations (15). is 

dV 
-- 
dt - 

- ahxz - 2aj’ (y) xz - of’ (y) 2’ + bz2 

It is easy to see that 

g<O for XfO, Z+O; 
dV 

--0 dt - fbr x = 0, 2 = 0 

The yu-plane obviously does not contain whole trajectories, except the 

origin of the coordinates. Thus the zero solution of equation (13) is 

asymptotically stable for arbitrary initial perturbations [ 2 1. 

The definiteness of the sign of the function V, and the fact that its 

derivative with respect to time is a function of fixed sign, also follow 

from the general propositions on the Liapunov functions of the type con- 

sidered, as established in paper [ 5 I . 
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